

Classification of NYC Aerosols by X-Ray and Optical Methods

By: John Sangobowale (Mount St. Michael Academy) and William Dennis (John F. Kennedy H.S.)

Mentors: Marc Cesaire (Graduate student) and Dr. Elizabeth Rudolph

EAS Department CCNY

Purpose

The Principal objective of our work is:

- Elemental Characterization of Aerosols collected by two methods for comparison:
 - EBAM: beta mass attenuation
 - Millipore apparatus: Vacuum Filtration
- Ultimately: to understand how weather patterns affect the chemical composition and darkness of aerosol particles

What are Aerosols?

- Aerosols are small solid or liquid particles suspended in the atmosphere. Their sizes vary from a few nanometers (0.000000001 meters) to almost 100 micrometers (0.0001 m, the thickness of a hair.
 - Volcanic dust
 - Combustion products
 - Soot
 - Smoke

Origin of Aerosols

 Aerosols originate both from natural and man-made (anthropogenic) sources. They can be directly emitted as particles (primary aerosols) or they can also be the result of chemical reactions (secondary aerosols).

Why do we study aerosols?

- Health issues: direct relationship between lung diseases
 - Asthma
 - Lung cancer
 - and particles 2.5 microns and smaller
- Safety and Security: Chemical classification of air masses to be able to recognize unusual or dangerous new patterns

Study Area

Collection:

Environmental Beta Attenuation

Mass Monitor (EBAM)

NASA SHARP

Analytical Methods

• X-RAY Fluorescence Spectrometry (XRF)

Philips PW 1400 X-Ray Fluorescence Spectrometer (XRF)

Classification by Element Constituents

- Using chemistry and elemental analysis: In particular the following elements:
 - Titanium (Ti)
 - Iron (Fe)
 - Sulfur (S)
- Logic for element selection:
 - Preliminary scans across spectra for all elements shows titanium iron and sulfur in intensities much above background
 - Sulfur compounds are produced through burning of fuels
 - Many elements are potentially harmful to humans especially in particles of 2.5 microns or less

XRF Results

Characterization by optical properties

 Correlating sample optical properties (darkness, fluorescence) with chemistry and weather data

Optical Microscopy

- Why do we use optical microscopy?
 - New approach at characterizing aerosol samples
 - Build upon other experimental work and correlate with XRF techniques and (later down the road...weather data)
- Nikon Fluorescence Microscope with CCD Camera

NASA SHARP

Ebam filters

July 18, 2004 10X

July 19, 2004 10X

Nikon Fluorescence Microscope with CCD Camera

NASA SHARP

Conclusion

- Titanium and Iron are present in aerosols in variable and sometimes high concentrations
- At first pass, optical darkness of filters correlates with weather characteristics suggesting that high humidity and rain events correlate with higher concentrations of metals

Further Work

- All data collected will be correlated to weather data, specifically humidity, precipitation and wind direction.
- We hope to be able to characterize aerosol chemistry by back-tracking to determine source.

References

http://www.atmosphere.mpg.de/enid/n2.html